The Triggering of Orographic Rainbands by Small-Scale Topography
نویسندگان
چکیده
The triggering of convective orographic rainbands by small-scale topographic features is investigated through observations of a banded precipitation event over the Oregon Coastal Range and simulations using a cloud-resolving numerical model. A quasi-idealized simulation of the observed event reproduces the bands in the radar observations, indicating the model’s ability to capture the physics of the band-formation process. Additional idealized simulations reinforce that the bands are triggered by lee waves past small-scale topographic obstacles just upstream of the nominal leading edge of the orographic cloud. Whether a topographic obstacle in this region is able to trigger a strong rainband depends on the phase of its lee wave at cloud entry. Convective growth only occurs downstream of obstacles that give rise to lee-wave-induced displacements that create positive vertical velocity anomalies wc and nearly zero buoyancy anomalies bc as air parcels undergo saturation. This relationship is quantified through a simple analytic condition involving wc, bc, and the static stability N 2 m of the cloud mass. Once convection is triggered, horizontal buoyancy gradients in the cross-flow direction generate circulations that align the bands parallel to the flow direction.
منابع مشابه
Observations and Modeling of Banded Orographic Convection
Radar images and numerical simulations of three shallow convective precipitation events over the Coastal Range in western Oregon are presented. In one of these events, unusually well-defined quasi-stationary banded formations produced large precipitation enhancements in favored locations, while varying degrees of band organization and lighter precipitation accumulations occurred in the other tw...
متن کاملAtmospheric Factors Governing Banded Orographic Convection
The three-dimensional structure of shallow orographic convection is investigated through simulations performed with a cloud-resolving numerical model. In moist flows that overcome a given topographic barrier to form statically unstable cap clouds, the organization of the convection depends on both the atmospheric structure and the mechanism by which the convection is initiated. Convection initi...
متن کاملNOTES AND CORRESPONDENCE Role of Narrow Mountains in Large-Scale Organization of Asian Monsoon Convection*
The Asian summer monsoon is organized into distinct convection centers, but the mechanism for this organization is not well understood. Analysis of new satellite observations reveals that narrow mountain ranges are an important organizing agent anchoring monsoon convection centers on the windward side. The Bay of Bengal convection, in particular, features the heaviest precipitation on its easte...
متن کاملProbing orographic controls in the Himalayas during the monsoon using satellite imagery
The linkages between the space-time variability of observed clouds, rainfall, large-circulation patterns and topography in northern India and the Himalayas were investigated using remote sensing data. The research purpose was to test the hypothesis that cloudiness patterns are dynamic tracers of rainstorms, and therefore their temporal and spatial evolution can be used as a proxy of the spatial...
متن کاملParallelization of a Subgrid Orographic Precipitation Scheme in an MM5-Based Regional Climate Model
Regional Climate Models (RCMs) are practical downscaling tools to yield regional climate information for assessing the impacts of climate variability and change. The Pacific Northwest National Laboratory (PNNL) RCM, based on the Penn State/NCAR Mesoscale Model (MM5), features a novel subgrid treatment of orographic precipitation for coupling climate, hydrologic, and ecologic processes at the wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006